

University of Ljubljana Faculty of Mechanical Engineering

Feasibility Study of Integrating Renewables and Hydrogen Technologies into Isolated Power Supply System of a Mountain Hut

B. Drobnič, <u>R. Stropnik</u>, B. Jurjevčič, M. Mori

SUSTAINABLE MOUNTAIN HUTS IN EUROPE LIFE15 CCA/ES/000058

SustainHuts Project description and goals

Life SustainHuts:

- EU funded project
- demonstrative project
- reduce CO₂ emissions
- implementing renewable energy

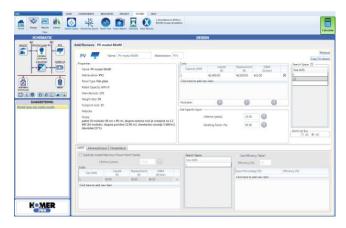
Partners

A1.1 Demo Huts real conditions definition

- FS together with PZS and RCVT covers 2 huts in Slovenia that will be chosen from 4 available huts due to technical parameters, sustainability and renewable energy sources availability at given location: Pogačnikov dom, Vodnikov dom, Kocbekov dom, Dom Zorka Jelinčiča. Technicians of UL and PZS visited 3 of them: Pogačnikov dom (31.8.2016), Vodnikov dom (4.10.2016), Kocbekov dom (25.08.2016).
- As consequence, information of the **current status** of the three huts visited was collected, and a report of each hut was elaborated. In addition, a questionnaire with basic information needed for LCA study.
- A **feasibility study** was done to identify a potential solution and upgrade of current energy system installed in the mountain huts in Slovenia.
- In all huts all mass and energy flows were identified with all current installations, electrical appliances, generators, etc.

Kocbekov dom na Korošici

Pogačnikov dom na Kriških podih

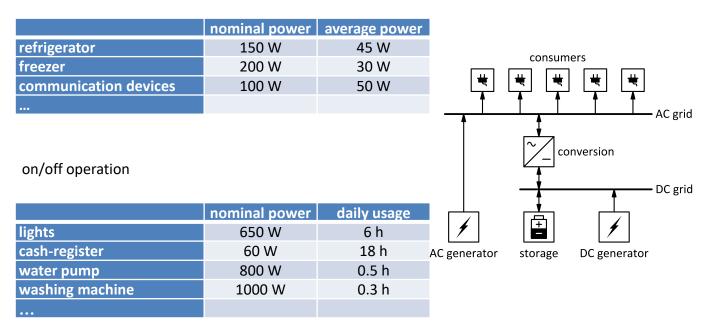


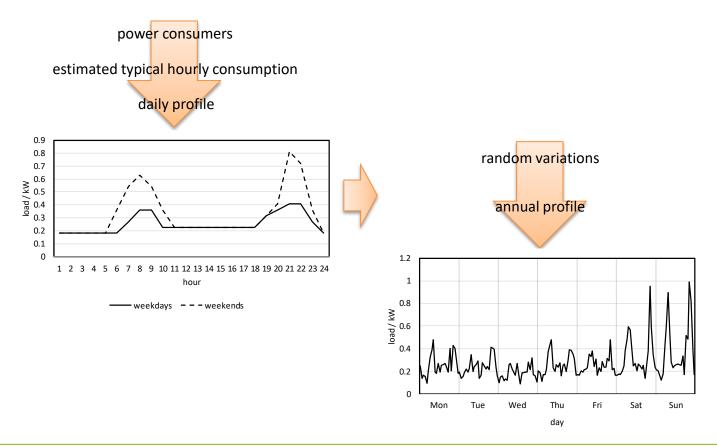
SustainHuts Simulation software – Homer pro®

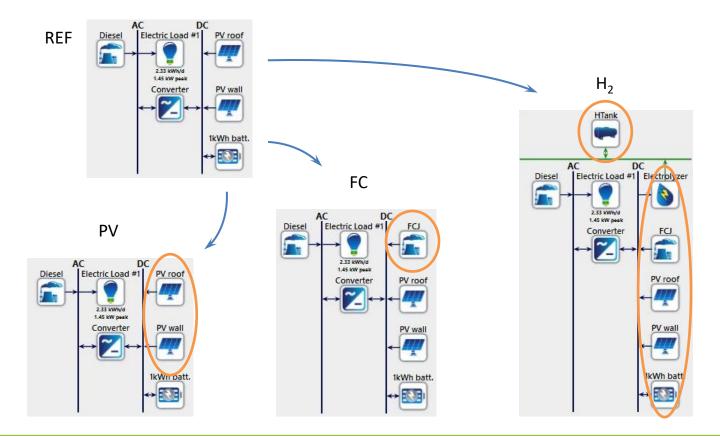
HOMER pro[®]

- simulating operation of a system through energy balances
- energy demand compared to energy supply energy flows to and from each component
- need for fuel-powered generators
- charging/discharging batteries
- various system configurations

SCHEMATIC		DESIGN	
AC Directics Leader #1 P/C P/C P/C P/C P/C P/C P/C P/C	ELECTRIC LOAD	Name Detro Load #1 Roover Doly holds Seasonal Puttle	+ +
	0 0000 0.4 1 0000 0.3 2 0.000 0.3 3 0.000 8 4 0.000 8.2 5 0.000 0.1	1- 53-	
SUGGESTIONS:	6 0.000 = 7 0.000 0-	· · · · · · · · · · · · · · · · · · ·	TT
	8 0.000 847 9 0.000 847 10 0.000 847 12 0.000 847 14 0.000 64 15 0.000 847 16 0.000 847 17 0.000 847 Three lings Sizes 60 minutes Three lings Sizes 60 minutes	Number Numer	949

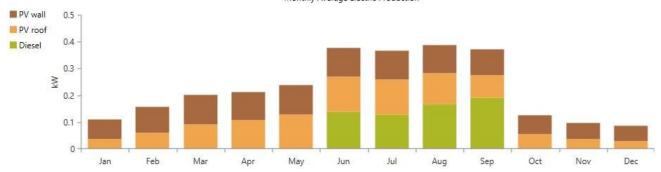



- 1. Numerical simulations of modelled systems were performed for a **10-year operating period**, during which no component needed to be replaced due to exceeded **lifetime**.
- 2. Load profiles for huts were generated with the data acquired through inspection of mountain huts systems in , identification of all power consumers and estimation of typical daily load dynamics. Actual measurements of power consumption are necessary to improve the estimated load profiles as well as simulation results.
- **3.** Energy production, conversion and storage components of existing systems were identified at the locations and all the technical specifications were acquired. Economical and environmental parameters were estimated for the present study as no reliable data were available.


always on operation

Technical data

	REF	PV	FC	H2	energy conversion				
AC generator					inverter				
diesel generator					nominal power	2 kW	2 kW	2 kW	2 kW
nominal power	5 kW	5 kW			efficiency	93 %	93 %	93 %	93 %
maximum efficiency	26 %	26 %			lifetime	15 years	15 years	15 years	15 year
minimum runtime	1 h	1 h			capital cost	150 €/kW	150 €/kW	150 €/kW	150 €/kW
lifetime	15 000 h	15 000 h			replacement cost	150 €/kW	150 €/kW	150 €/kW	150 €/kW
capital cost	600 €/kW	600 €/kW			O&M cost	0 €/year	0 €/year	0 €/year	0 €/yea
replacement cost	500 €/kW	500 €/kW			rectifier (charger)				
O&M cost	0.030 €/h	0.030 €/h			nominal power	2 kW	2 kW	2 kW	2 kW
DC generator					efficiency	93 %	93 %	93 %	93 %
wall mounted PV panels					lifetime	15 years	15 years	15 years	15 year
nominal power	600 W	600 W	600 W	2400 W	capital cost	150 €/kW	150 €/kW	150 €/kW	150 €/kW
efficiency (STC)	12.5 %	12.5 %	12.5 %	12.5 %	replacement cost	150 €/kW	150 €/kW	150 €/kW	150 €/kW
temp. effect on power	-0.5 %/K	-0.5 %/K	-0.5 %/K	-0.5 %/K	O&M cost	0 €/year	0 €/year	0 €/year	0 €/yea
nominal operating temp.	45 °C	45 °C	45 °C	45 °C	storage				
derating factor	90 %	90 %	90 %	90 %	lead-acid battery				
panel slope	40°	40°	40°	40°	capacity	29 kWh	29 kWh	29 kWh	
panel azimuth	-15°	-15°	-15°	-15°	nominal voltage	24 V	24 V	24 V	
ground reflectance	20 %	20 %	20 %	20 %	minimum state of charge	20 %	20 %	20 %	
lifetime	25 years	25 years	25 years	25 years	initial state of charge	100 %	100 %	100 %	
capital cost	3000 €/kW	3000 €/kW	3000 €/kW	3000 €/kW	lifetime	15 years	15 years	15 years	
replacement cost	3000 €/kW	3000 €/kW	3000 €/kW	3000 €/kW	maximum throughput	400 000 kWh	400 000 kWh	400 000 kWh	
O&M cost	10 €/year	10 €/year	10 €/year	10 €/year	capital cost	240 €/kW	240 €/kW	240 €/kW	
roof mounted PV panels					replacement cost	220 €/kW	220 €/kW	220 €/kW	
nominal power	700 W	2100 W	700 W	2800 W	O&M cost	10 €/year	10 €/year	10 €/year	
efficiency (STC)	12.5 %	12.5 %	12.5 %	12.5 %	electrolyzer				
temp. effect on power	-0.5 %/K	-0.5 %/K	-0.5 %/K	-0.5 %/K	nominal power				5 kW
nominal operating temp.	45 °C	45 °C	45 °C	45 °C	efficiency				50 %
derating factor	90 %	90 %	90 %	90 %	minimum load ratio				30 %
panel slope	20°	20°	20°	20°	lifetime				15 year
panel azimuth	-105°	-105°	-105°	-105°	costs				not considered
ground reflectance	20 %	20 %	20 %	20 %	hydrogen tank				
lifetime	25 years	25 years	25 years	25 years	size				50 kg H
capital cost	3000 €/kW	3000 €/kW	3000 €/kW	3000 €/kW	initial level				50 %
replacement cost	3000 €/kW	3000 €/kW	3000 €/kW	3000 €/kW	lifetime				25 year
O&M cost	10 €/year	10 €/year	10 €/year	10 €/year	costs				not considered
fuel cell									
nominal power			1 kW	2 kW					
maximum efficiency			41 %	41 %					
minimum runtime			0 h	0 h					
lifetime			5 000 h	5 000 h					
capital cost			3000 €/kW	3000 €/kW					
replacement cost			2500 €/kW	2500 €/kW					
O&M cost			0.010 €/h	0.010 €/h					

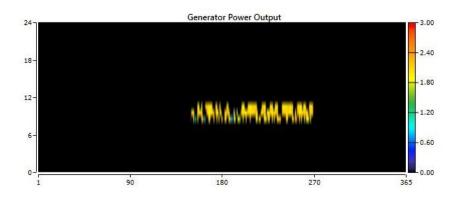

Production	kWh/yr	%
Generic flat plate PV on roof	737	36.90
Generic flat plate PV on wall	802	40.19
Diesel electricity generator	457	22.91
Total	1,996	100.00

Consumption	kWh/yr	%
AC Primary Load	850	100.00
DC Primary Load	0	0.00
Total	850	100.00

Quantity	kWh/yr	%
Excess Electricity	930.1	46.6
Unmet Electric Load	0.0	0.0
Capacity Shortage	0.0	0.0

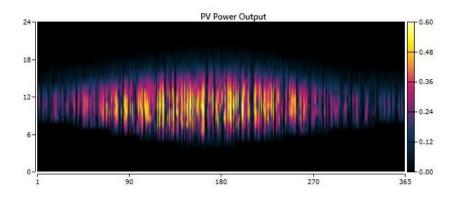
Quantity	Value
Renewable Fraction	46.2
Max. Renew. Penetration	2,976.2

Monthly Average Electric Production

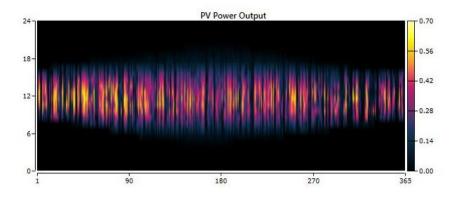


Quantity	Value	Units
Hours of Operation	272	hrs/yr
Number of Starts	122	starts/yr
Operational Life	55.1	yr
Capacity Factor	0.989	%
Fixed Generation Cost	0.717	€/hr
Marginal Generation Cost	0.700	€/kWh

Quantity	Value	Units
Electrical Production	433.02	kWh/yr
Mean Electrical Output	1.59	kW
Minimum Electrical Output	0.13	kW
Maximum Electrical Output	2.66	kW

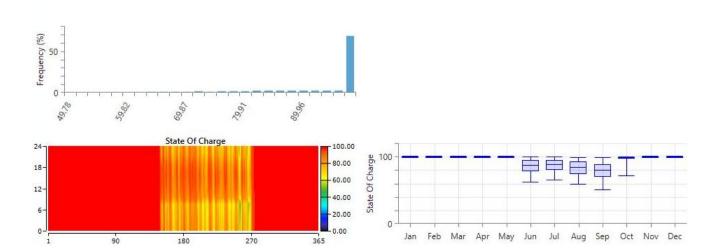

Quantity	Value	Units
Fuel Consumption	205.96	L
Specific Fuel Consumption	0.48	L/kWh
Fuel Energy Input	2,026.62	kWh/yr
Mean Electrical Efficiency	21.37	%

Quantity	Value	Units
Rated Capacity	0.70	kW
Mean Output	0.08	kW
Mean Output	2.02	kWh/d
Capacity Factor	12.01	%
Total Production	736.57	kWh/yr


Quantity	Value	Units
Minimum Output	0.00	kW
Maximum Output	0.591	kW
PV Penetration	86.6	%
Hours of Operation	4,380	hrs/yr
Levelized Cost	0.264	€/kWh

Quantity	Value	Units
Rated Capacity	0.60	kW
Mean Output	0.09	kW
Mean Output	2.20	kWh/d
Capacity Factor	15.26	%
Total Production	802.24	kWh/yr

Quantity	Value	Units
Minimum Output	0.00	kW
Maximum Output	0.632	kW
PV Penetration	94.3	%
Hours of Operation	4,380	hrs/yr
Levelized Cost	0.208	€/kWh



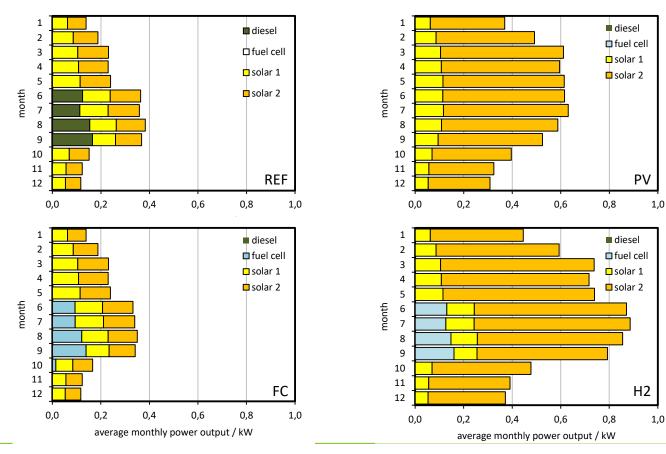
Quantity	Value	Units
Batteries	29.00	
String Size	1.00	
Strings in Parallel	29.00	
Bus Voltage	12.00	

Quantity	Value	Units
Autonomy	239.16	hr
Storage Wear Cost	0.00	€/kWh
Nominal Capacity	29.02	kWh
Usable Nominal Capacity	23.22	kWh
Lifetime Throughput	8,814.06	kWh
Expected Life	15.00	yr

Quantity	Value	Units
Average Energy Cost	0.28	€/kWh
Energy In	656.96	kWh/yr
Energy Out	525.57	kWh/yr
Storage Depletion	0.00	kWh/yr
Losses	131.39	kWh/yr
Annual Throughput	587.60	kWh/yr

electric load

and production


	REF	PV	FC	H2
kWh/a	821	821	821	821
kWh/a	408			
kWh/a	796	796	796	796
kWh/a	909	3634	909	4543
kWh/a			339	413
kWh/a	2112	4430	2043	5752
kWh/a	1080	3442	1044	625
%	50	100	59 ²	100
	kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a	kWh/a821kWh/a408kWh/a796kWh/a909kWh/a2112kWh/a1080	kWh/a821821kWh/a408kWh/a796796kWh/a9093634kWh/a21124430kWh/a10803442	kWh/a821821kWh/a408

¹ of total load served

² off-site produced hydrogen is not considered as RES

energy effectivess			REF	PV	FC	H2
chergy chectivess	excess electricity					
	absolute	kWh/a	1080	3442	1044	625
	relative	%	51	78	51	11
	capacity factor					
	diesel	%	1			
	fuel cell	%			4	4
	solar	%	15	15	15	15

- Three types of modifications of the systems were simulated: PV, FC and H₂ to test feasibility of proposed solutions and to estimate the required capacity of additional power sources. Load profiles remained unchanged for the modified cases.
- 2. Increased capacity of PV modules proved to be sufficient solution since storage capacity is oversized for the existing systems and still adequate for the modified systems. The total capacity needs to be increased by 160 %.
- 3. Replacement of considerably oversized diesel generators with **fuel cell system is also possible**. Both examples showed that a 1 kW unit would be adequate but the operating regimes need to be appropriately set to provide sufficient amouont of energy for normal operation of the system.
- 4. Instalation of hydrogen energy storage system (electrolyzer, hydrogen tank and fuel cell) also requires installation of additional power production capacities (e.g. photovoltaics) much larger than existing ones (by factor 3 to 4). Furthermore, since the energy storage needs to be seasonal for the observed cases, the storage capacity is very large (50 kg or 1.3 m³@700 bar of hydrogen).

University of Ljubljana Faculty of Mechanical Engineering

Thank you for your attention!

Rok Stropnik

University of Ljubljana, Faculty of Mechanical Engineering rok.stropnik@fs.uni-lj.si

> SUSTAINABLE MOUNTAIN HUTS IN EUROPE LIFE15 CCA/ES/000058